Human Replication Protein A−Rad52−Single-Stranded DNA Complex: Stoichiometry and Evidence for Strand Transfer Regulation by Phosphorylation†
نویسندگان
چکیده
The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential in DNA metabolism and is phosphorylated in response to DNA-damaging agents. Rad52 and RPA participate in the repair of double-stranded DNA breaks (DSBs). It is known that human RPA and Rad52 form a complex, but the molecular mass, stoichiometry, and exact role of this complex in DSB repair are unclear. In this study, absolute molecular masses of individual proteins and complexes were measured in solution using analytical size-exclusion chromatography coupled with multiangle light scattering, the protein species present in each purified fraction were verified via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)/Western analyses, and the presence of biotinylated ssDNA in the complexes was verified by chemiluminescence detection. Then, employing UV cross-linking, the protein partner holding the ssDNA was identified. These data show that phosphorylated RPA promoted formation of a complex with monomeric Rad52 and caused the transfer of ssDNA from RPA to Rad52. This suggests that RPA phosphorylation may regulate the first steps of DSB repair and is necessary for the mediator function of Rad52.
منابع مشابه
Supplemental Information for: Human Replication Protein A, Rad52, ssDNA Complex: Stoichiometry and Evidence for Strand Transfer Regulation by Phosphorylation
Protein Purification, and ssDNA. RPA was purified as described previously with the following modification. Bacterial cultures expressing recombinant RPA were supplemented with 100 μM ZnCl2. The protein concentrations were calculated using a Bradford assay (BioRAD) with bovine serum albumin as a standard. These values were verified using a NanoDrop spectrophotometer and extinction coefficient of...
متن کاملAnalysis of the human replication protein A:Rad52 complex: evidence for crosstalk between RPA32, RPA70, Rad52 and DNA.
The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential for DNA replication, and plays important roles in DNA repair and DNA recombination. Rad52 and RPA, along with other members of the Rad52 epistasis group of genes, repair double-stranded DNA breaks (DSBs). Two repair pathways involve RPA and Rad52, homologous recombination and single-strand annealing. T...
متن کاملDNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA.
Homologous recombination in Saccharomyces cerevisiae depends critically on RAD52 function. In vitro, Rad52 protein preferentially binds single-stranded DNA (ssDNA), mediates annealing of complementary ssDNA, and stimulates Rad51 protein-mediated DNA strand exchange. Replication protein A (RPA) is a ssDNA-binding protein that is also crucial to the recombination process. Herein we report that Ra...
متن کاملHuman Rad52 binds and wraps single-stranded DNA and mediates annealing via two hRad52–ssDNA complexes
Rad52 promotes the annealing of complementary strands of DNA bound by replication protein A (RPA) during discrete repair pathways. Here, we used a fluorescence resonance energy transfer (FRET) between two fluorescent dyes incorporated into DNA substrates to probe the mechanism by which human Rad52 (hRad52) interacts with and mediates annealing of ssDNA-hRPA complexes. Human Rad52 bound ssDNA or...
متن کاملRad51 protein controls Rad52-mediated DNA annealing.
In Saccharomyces cerevisiae, Rad52 protein plays an essential role in the repair of DNA double-stranded breaks (DSBs). Rad52 and its orthologs possess the unique capacity to anneal single-stranded DNA (ssDNA) complexed with its cognate ssDNA-binding protein, RPA. This annealing activity is used in multiple mechanisms of DSB repair: single-stranded annealing, synthesis-dependent strand annealing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 48 شماره
صفحات -
تاریخ انتشار 2009